The Sec15 protein responds to the function of the GTP binding protein, Sec4, to control vesicular traffic in yeast

نویسندگان

  • A Salminen
  • P J Novick
چکیده

SEC15 function is required at a late stage of the yeast secretory pathway. Duplication of the gene encoding the ras-like, GTP-binding protein, Sec4, can suppress the partial loss of function resulting from the sec15-l mutation, but cannot suppress disruption of sec15. Analysis of the SEC15 gene predicts a hydrophilic protein product of 105 kD. Anti-Sec15 antibody recognizes a protein of 116-kD apparent molecular mass which is associated with a microsomal fraction of yeast in a strongly pH dependent fashion. Overproduction of Sec15 protein interferes with the secretory pathway, resulting in the formation of a cluster of secretory vesicles, and a patch of Sec15 protein revealed by immunofluorescence. The sec4-8 and sec2-4l mutations, but not mutations in other SEC genes, prevent formation of the Sec15 protein patch. We propose that Sec15 protein responds to the function of the Sec4 protein to control vesicular traffic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sec2 protein contains a coiled-coil domain essential for vesicular transport and a dispensable carboxy terminal domain

SEC2 function is required at the post-Golgi apparatus stage of the yeast secretory pathway. The SEC2 sequence encodes a protein product of 759 amino acids containing an amino terminal region that is predicted to be in an alpha-helical, coiled-coil conformation. Two temperature-sensitive alleles, sec2-41 and sec2-59, encode proteins truncated by opal stop codons and are suppressible by an opal t...

متن کامل

Binding and hydrolysis of guanine nucleotides by Sec4p, a yeast protein involved in the regulation of vesicular traffic.

The 23.5-kDa Sec4 protein is required for vesicular transport between the Golgi apparatus and the plasma membrane in Saccharomyces cerevisiae. In order to analyze its biochemical properties, we have purified the soluble pool of the wild-type protein from an overproducing yeast strain. At 30 degrees C, Sec4p bound [35S] guanosine 5'-O-(thiotriphosphate) (GTP gamma S) with a rate of 0.18 min-1 in...

متن کامل

Sec6, Sec8, and Secl5 Are Components of a Multisubunit Complex Which Localizes to Small Bud Tips in Saccharomyces cerevisiae

In the yeast Saccharomyces cerevisiae, the products of at least 14 genes are involved specifically in vesicular transport from the Golgi apparatus to the plasma membrane. Two of these genes, $EC8 and SEC15, encode components of a 1-2-million D multisubunit complex that is found in the cytoplasm and associated with the plasma membrane. In this study, oligonucleotide-directed mutagenesis is used ...

متن کامل

Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane

Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, r...

متن کامل

The yeast lgl family member Sro7p is an effector of the secretory Rab GTPase Sec4p

Rab guanosine triphosphatases regulate intracellular membrane traffic by binding specific effector proteins. The yeast Rab Sec4p plays multiple roles in the polarized transport of post-Golgi vesicles to, and their subsequent fusion with, the plasma membrane, suggesting the involvement of several effectors. Yet, only one Sec4p effector has been documented to date: the exocyst protein Sec15p. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1989